Patterns and Sequences

A SEQUENCE is a set of numbers that follow a pattern. Each number in the sequence is a TERM of the sequence.

```
Today wére going to look at TWO KINDS OF SEQUENCES:
    1. ARITHMETIC SEQUENCES
    2. GEOMETRIC SEQUENCES
```

You find a term of an ARITHMETIC SEQUENCE by ADDING a fixed number to the previous term. This fixed number is called the COMMON DIFFERENCE.

1 - Finding the Common Difference
Example - What is the common difference in each sequence?
a. $8,13,18,23$...
b. $12,9,6,3$,...

You find a term of a GEOMETRIC SEQUENCE by MULTIPLYING the previous term by a fixed number called the COMMON RATIO.

2 - Finding the Common Ratio
Example - Find the common ratio and next three terms of each sequence. Then write a rule to describe the sequence.
a. $4,12,36,108$...
b. $4,2,1,0.5$,...

Not every sequence is arithmetic or geometric. You can determine whether any sequence of number is arithmetic or geometric by looking for a common difference or a common ratio. For other sequences, you can look for patterns.

Tell whether each sequence is arithmetic, geometric, or neither. Then find the next three terms of each sequence.
a. $4,6,8,10$,...
b. $4,6,9,13.5, \ldots$
c. $4,6,9,13, \ldots$

Graphing Nonlinear Functions
In this lesson, we will learn about TWO TYPES OF NONLINEAR FUNCTIONs:
1. QUADRATIC FUNCTIONS
2. ABSOLUTE VALUE FUNCTIONS

In a QUADRATIC FUNCTION, the input variable (x) is squared. The graph of a quadratic function is a U-shaped curve called a PARABOLA. The curve may open downward or upward.

1-Graphing a Quadratic Function
Example - For the function $y=2 x^{2}$, make a table with integer values of x from -2 to 2. Then graph the function.

Do you remember what absolute value means?
2 -Graphing an Absolute Value Function
The equation $y=\|x\|$ is an ABSOLUTE VALUE FUNCTION.
Try it! Use a table to graph the function $y=\|x\|$.
You might have noticed the graph of $y=\|x\|$ is V-shaped. Why is that?

Polynomials
(Poly-nOme-ials, not polynolimals, polynonias, plolinolimams!)

We have already studied expressions like $x+3$ or $17 y-2$. Some of these expressions are MONOMIALS. A MONOMIAL is a real number, a variable, or a product of real numbers and variables with wholenumber exponents. In other words, MONOMIALS only have one TERM.

```
Examples: 3 m 5xy 0.35bc
```

A POLYNOMIAL is a monomial or a sum or difference of monomials. We call the monomials that make up a polynomial its TERMS. Polynomials are named by the number of their terms.

Polynomial	Number of Terms	Examples
monomial	1	$4,32, x, 2 x^{2}$
binomial	2	$x-3,5 x+1, x^{3}-x$
trinomial	3	$x^{2}+x+1 x^{4}-2 x-5$

Evaluating Polynomials

Wéve been evaluating all year. You probably (hopefully!) remember that to evaluate a problem means to replace the variables with a given value and solve. Evaluating polynomials works the same way!

Examples:

Evaluate each polynomial for $m=8$ and $p=-3$.
a. $2 m p$
b. $3 m-2 p$

Evaluate each polynomial for $x=-2$ and $y=5$.
a. $5 x y$
b. $x+3 y$
c. $y^{2}-2 y+x$

Adding Polynomials
You add polynomials by combining their like terms. Ilike to add by stacking like this:

Example: Simplify $\left(7 d^{2}+7 d\right)+\left(2 d^{2}+3 d\right)$.

Now you try the following examples in your notes:

1. $\left(x^{2}+2 x+5\right)+\left(3 x^{2}+x+12\right)$.
2. $\left(w^{2}+5 w\right)+(2 w-6)$.

Subtracting Polynomials

Subtracting polynomials works in much the same way. You simply add the opposite of each term in the second polynomial:

Example: Simplify $\left(5 x^{2}+10 x\right)-(3 x-12)$

Now try these in your notes:

1. $\left(3 w^{2}+8+v\right)-\left(5 w^{2}-7 v-3\right)$
2. $\left(x^{2}-3 x-9\right)-\left(5 x-4-16 x^{3}\right)$

Word Problem Applications

Write an expression for the sum of three consecutive integers. Let x be the first integer, then simplify the expression. What three consecutive integers have a sum of 108?

The perimeter of a triangle is $11 \mathrm{y}-2$. Two of the sides are represented by the expressions $3 y-1$ and $3 y+1$. Write an expression for the third side.

Multiplying a Polynomial by a Monomial

The trick to multiplying any size polynomial by another polynomial is making sure each term in the first polynomial is multiplied by each term in the second. In this section, we will practice with multiplying monomials and polynomials.

The steps for multiplying monomials and polynomials are simple:

1. MULTIPLY each ferm in the monomial with each term in the polynomial.
2. SIMPLIFY the product by combining like terms.

Herés an example:
$2 a^{2}\left(2 a^{3}-3 a^{2}+3\right)$

Now try some more practice problems...

$$
\begin{gathered}
(a-4)(a-2) \\
(b+1)^{2} \\
(2 a+b)(4 c-2 c)
\end{gathered}
$$

$$
(1 / 2 x+9)(4 x+8)
$$

