

Using the Pythagorean Theorem
The lengths of two sides of a right triangle are given. Find the length of the third side.
a. legs: 3 ft. and 4 ft.
b. leg: 12 m; hypotenuse: 15 m.

	Special Right Triangles
When we learne inderstand how a number	ed about Pythagorean Theorem, you were required to square roots work and that taking the square root of is the opposite, or inverse, of squaring a number.
Today we're goir i	ig to add to our knowledge of square roots by learning the rule for Multiplying Square Roots:
Key Cor	ncepts Multiplying Square Roots
For nor product	anegative numbers, the square root of a product equals the t of the square roots. Arithmetic Algebra
	$\sqrt{9 \cdot 2} = \sqrt{9} \cdot \sqrt{2} \qquad \qquad \text{If } a \ge 0 \text{ and } b \ge 0, \\ \text{then } \sqrt{ab} = \sqrt{a} \cdot \sqrt{b}.$

30°-60°-90° Triangles		
Key Concepts	30°-60°-90° Triangle	
In a 30°-60°-90° hypotenuse is 2 shorter leg. The is the length of t hypote long.	triangle, the length of the times the length of the length of the longer leg the shorter leg times $\sqrt{3}$. enuse = 2 · shorter leg er leg = shorter leg $\cdot \sqrt{3}$	
You can use th	is relationship to find missing le	ingths:
Find the missing ler	ngths in the triangle.	N acc
hypotenuse = 2 x = 2 x = 10 longer leg = sh y = 5	• shorter leg • 5 The length of the shorter leg is 5. • Simplify. Horter leg • $\sqrt{3}$ • $\sqrt{3}$ The length of the shorter leg is 5.	$y = \frac{30^{\circ}}{5 \text{ ft}}$
$y \approx 8.$ The length of the h	7 Use a calculator.	longer
leg is about 8.7 ft.		

May 03, 2011

