Expressions

mathematical expression - a collection of symbols that jointly express aquantity

Can you translate the following into a mathematical expression?

1. nine more than a number y
2. 4 less than a number n
3. a number z times three
4. a number a divided by 12
5. 5 times the quantity 4 plus a number c

Writing in Math	
You can translate many	
words for operations	
into operation symbols.	
total	+
more than	+
increased by	+
difference	-
fewer than	-
less than	-
decreased by	-
product	\times or \cdot or ()
times	\times or \cdot or ()
quotient	\div or -
divided by	\div or -

What did Aunt Sally do exactly?!?

PEMDAS

P-parenthesis (or other grouping symbols
E-exponents
M\&D - multiplication and division from left to right
A \&S - addition and subtraction from left to right

Can you follow the rules?
$[2+(6 * 8)]-1$
$2(6)+\frac{7+8}{3}$

Evaluating Expressions

To evaluate a variable expression, you first replace each variable with a number. Then, you use the order of operations to simplify.

$$
\begin{aligned}
& \text { Evaluate } \mathbf{4 y} \mathbf{y} \mathbf{- 1 5} \text { for } \boldsymbol{y}=\mathbf{9 .} \\
& \qquad \begin{aligned}
4 y-15 & =4(9)-15 & & \text { Replace } \boldsymbol{y} \text { with } \mathbf{9} . \\
& =36-15 & & \text { Multiply. } \\
& =21 & & \text { Subtract. }
\end{aligned}
\end{aligned}
$$

Try this example with your table mate:

An online music store charges ș 14 for each CD. Shipping costs și6 per order. Write a variable expression for the cost of ordering CDs. Find the cost of ordering eight CDs.

Absolute Value

What does absolute value mean? How do we know when wére being asked to find absolute value?
absolute value - a number's distance from zero on the number line Here are some important examples...

Use a number line to find I-3| and |3|.

Integers

integers - the whole numbers and their opposites

Can you think of some real-world ways we see negative numbers?

temperatures
 sea level measurements
 debt
 bank balance - cek!

Graph these integers on a number line and order them from least to greatest: 0, 2, and -4.

Adding Integers

Let's practice!

13. $14+(-11)$
14. $0+(-9)$
15. $-6+(-7)$
16. $-18+4$
17. $-40+93$
18. $-26+(-39)$
19. $450+(-350)$
20. $100+(-100)$
21. $235+(-420)$

Key Concepts Adding Integers

Same Sign The sum of two positive integers is positive. The sum of two negative integers is negative.
Different Signs To add two integers with different signs, find the difference of their absolute values. The sum has the sign of the integer with the greater absolute value.

Key Concepts Addition of Opposites

The sum of an integer and its opposite is zero.

> Arithmetic
> $1+(-1)=0$
> $-1+1=0$

Algebra
$x+(-x)=0$
$-x+x=0$

Subtracting Integers

Let's practice!

18. $6-2$
19. $6-(-2)$
20. $-6-2$
21. $2-6$
22. $2-(-6)$
23. $-2-6$
24. $5-11$
25. $75-(-25)$
26. $22-(-7)$
27. $87-(-9)$
28. $35-15$
29. $100-(-91)$

Key Concepts Subtracting Integers

To subtract an integer, add its opposite.

Arithmetic

$$
\begin{gathered}
2-5=2+(-5)=-3 \\
2-(-5)=2+5=7
\end{gathered}
$$

$$
a-b=a+(-b)
$$

$$
a-(-b)=a+b
$$

Multiplying \& Dividing Integers

Give these problems a try...

Simplify each product.
5. $3(-3)$
6. $4(-11)$
7. $3(-8)$
8. $5(-10)$
9. $6(-3)$
10. $2(-15)$
11. $9(-9)$
12. $3(-24)$
13. $8(-6)$
14. $-5(-3)$
15. $-6 \cdot 10$
16. $-10 \cdot 0$
17. $-9(-8)(-5)$
18. $0(-12) \cdot 4$
19. $8 \cdot 3(-4)$

Find each quotient.
20. $24 \div(-24)$
21. $18 \div(-1)$
22. $-120 \div 12$
23. $56 \div(-8)$
24. $-72 \div 12$
25. $-100 \div(-10)$
26. $-38 \div(-2)$
27. $-72 \div 6$
28. $-33 \div 11$

Multiplying and dividing integers is easy! There's only one rule to remember (how often does that happen in math?!?).

Key Concepts Multiplying Integers

The product of two integers with the same sign is positive.
The product of two integers with different signs is negative.
The product of zero and any integer is zero.
Examples

$$
\begin{array}{rlrl}
3(4) & =12 & 3(-4) & =-12 \\
-3(-4) & =12 & -3(4) & =-12 \\
3(0) & =0 & -4(0) & =0
\end{array}
$$

Key Concepts Dividing Integers

The quotient of two integers with the same sign is positive.
The quotient of two integers with different signs is negative.
Remember that division by zero is undefined.

$$
\text { Examples } \left.\begin{array}{rlrl}
12 \div 3 & =4 & 12 \div(-3) & =-4 \\
& -12 \div(-3) & =4 & -12 \div 3
\end{array}\right)=-4
$$

QUESTION: what do you notice about your answers when you work the following problems?

17. $-9(-8)(-5)$
18. $0(-12) \cdot 4$
19. $8 \cdot 3(-4)$

What conclusion can you draw from your answers?
Could you predict which sign your answer will have without working the problem? How?

